Ratiometric pulse-chase amidination mass spectrometry as a probe of biomolecular complex formation.
نویسندگان
چکیده
Selective chemical modification of protein side chains coupled with mass spectrometry is often most informative when used to compare residue-specific reactivities in a number of functional states or macromolecular complexes. Herein, we develop ratiometric pulse-chase amidination mass spectrometry (rPAm-MS) as a site-specific probe of lysine reactivities at equilibrium using the Cu(I)-sensing repressor CsoR from Bacillus subtilis as a model system. CsoR in various allosteric states was reacted with S-methyl thioacetimidate (SMTA) for pulse time, t, and chased with excess of S-methyl thiopropionimidate (SMTP) (Δ = 14 amu), quenched and digested with chymotrypsin or Glu-C protease, and peptides were quantified by high-resolution matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and/or liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). We show that the reactivities of individual lysines from peptides containing up to three Lys residues are readily quantified using this method. New insights into operator DNA binding and the Cu(I)-mediated structural transition in the tetrameric copper sensor CsoR are also obtained.
منابع مشابه
A Fluorescence Ratiometric Probe for Detection of Cyanide in Water Sample and Living Cells
In the present work, Compound 1 has been synthesized as a novel fluorescence ratiometric probe for CN. Upon treatment with CN, Probe 1 exhibited a fluorescence ratiometric response, with the emission wavelength shift from 570 nm to 608 nm. When 90 μM CN was introduced, the emission ratios (I570/I608) of the probe changed dramatically from 0.52156 to 4.21472. The detection limit was also measure...
متن کاملA simple levulinate-based ratiometric fluorescent probe for sulfite with a large emission shift.
A simple 4-hydroxynaphthalimide-derived colorimetric and ratiometric fluorescent probe (1) containing a receptor of levulinate moiety was designed and synthesized to monitor sulfite. Probe 1 could quantificationally detect sulfite by a ratiometric fluorescence spectroscopy method with high selectivity and sensitivity. Specially, probe 1 exhibited a 100 nm red-shifted absorption spectrum along w...
متن کاملA coumarin-quinolinium-based fluorescent probe for ratiometric sensing of sulfite in living cells.
Based on a novel coumarin-quinolinium platform, probe 2 was rationally designed and synthesized as a novel ratiometric fluorescent sensor for sulfite anions. The probe exhibited a wide dynamic concentration range for sulfite anions in a PBS buffer (containing 1 mg mL(-1) BSA). More importantly, the probe was suitable for ratiometric fluorescence imaging in living cells with high sensitivity, fa...
متن کاملRatiometric pulsed alkylation/mass spectrometry of the cysteine pairs in individual zinc fingers of MRE-binding transcription factor-1 (MTF-1) as a probe of zinc chelate stability.
Metal-response element (MRE)-binding transcription factor-1 (MTF-1) is a zinc-regulated transcriptional activator of metallothionein (MT) genes in mammalian cells. The MRE-binding domain of MTF-1 (MTF-zf) has six canonical Cys(2)-His(2) zinc finger domains that are distinguished on the basis of their apparent affinities for zinc and their specific roles in MRE-binding. In this paper, pulsed alk...
متن کاملConstruction of a near-infrared fluorescence turn-on and ratiometric probe for imaging palladium in living cells.
A new NIR fluorescent probe, NIR-Pd, for palladium species was designed and synthesized, based on a HD NIR fluorophore and deprotection of aryl propargyl ethers by palladium. The probe NIR-Pd displayed either a large NIR fluorescence turn-on or ratiometric response to palladium with high sensitivity and selectivity. Additionally, the novel NIR probe can monitor palladium species in live HeLa ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 83 23 شماره
صفحات -
تاریخ انتشار 2011